a2 United States Patent

Olivarez et al.

US009304880B2

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

SYSTEM AND METHOD FOR MULTICORE
PROCESSING

Applicants:Michael L. Olivarez, Pflugerville, TX
(US); Stephen J. Benzel, Austin, TX
(US); Robert N. Ehrlich, Round Rock,
TX (US); Robert A. McGowan, Cedar

Inventors:

Assignee:

Notice:

Appl. No.

Filed:

Park, TX (US)

Michael L. Olivarez, Pflugerville, TX
(US); Stephen J. Benzel, Austin, TX
(US); Robert N. Ehrlich, Round Rock,
TX (US); Robert A. McGowan, Cedar

Park, TX (US)

Freescale Semiconductor, Inc., Austin,

TX (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 161 days.
: 13/843,090
Mar. 15,2013

Prior Publication Data

(10) Patent No.: US 9,304,880 B2
(45) Date of Patent: Apr. 5, 2016
(52) U.S.CL
CPC oo, GO6F 11/2242 (2013.01)
(58) Field of Classification Search
USPC et 714/32,25, 11

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,200,839 B2 4/2007 Kadlecik et al.
2004/0117743 Al 6/2004 Gehman et al.
2005/0034017 Al* 2/2005 Airaudetal. 714/25
2005/0273671 Al* 12/2005 Adkisson etal. 714/43
2008/0307260 Al* 12/2008 Kangetal. 714727
2010/0281304 Al* 11/2010 Moyeretal.cc.ooe. 714/37
2011/0072309 Al 3/2011 Sakai et al.

* cited by examiner
Primary Examiner — Sarai Butler

(57) ABSTRACT

A method and apparatus for an asynchronous multicore com-
mon debugging system is described. Debug signals from a
plurality of processor cores are synchronized to a common
timing domain. Processing completed within the plurality of
processor cores during acommon timing interval is tracked. A
single debugging tool chain is utilized to provide debugging

US 2014/0281735 Al Sep. 18, 2014 results in response to the tracking the processing completed
within the plurality of processor cores during the common
Int. Cl. timing interval.
GO6F 11/00 (2006.01)
GOG6F 1122 (2006.01) 20 Claims, 6 Drawing Sheets
500
§501 §502 g503 §504
KEYBOARD
DISPLAY AND STORAGE PERIPHERALS
MOUSE
11“ 12A . 7y 141\
509+ 5] 24 SE3) S
y y v ¥
SYSTEM INTERCONNECT
515 1 17 |
vy 508 B A e B
v S ¥ S ¥ S
PROCESSOR
cliclhicy|c
ofoleye INPUT-QUTPUT DEBUG
RIIR||RI[R y
ENEV ELE MEMORY (I/0) INTERFACE
1)1 2..0[N
531-532°533° 534

5217/'i 5231

US 9,304,880 B2

Sheet 1 of 6

Apr. 5,2016

U.S. Patent

L OLAd VI
<OVT |
~J oneac 5| ;nLomis
arl N| g
et] Homas | | Howas |—— 8er BT —
w21 |— 1 Coar | v 30 N P i e
801° 91T 21T ¥0SS3004d 61
$por1 g1
¢SIT TIT et
€ AYONIW 7~ 2ndd 7
QRVHS [775 "HONAS | |"HONAS Tor Nwﬂm e _ SET
$rer
¥0$$300Ud
L01° LIS . s
LOINNOJHIINT cor
WALSAS Zoer | EEZINGUHONAS
~] oneaa Zort
C oM | Homas | | owas [—] 92T .
221 orr | 2 200 po
S $prr 0112 ¥0SS3004d
o 2 S 6] 9Pl
20T
— FOVAIAINI
~ 9Ng3a
Tt] Honas| | Howas |—] 527 ,
z1 id B IR
o Lerr 6017 ¥0S$II0Ud
2 ¥399N830
Vs IpT 2 10T ;
001 orT

US 9,304,880 B2

Sheet 2 of 6

Apr. 5, 2016

U.S. Patent

0ce

002 ON
/ f
3131dW0D
OVIL
A A
1 | | 1 |
I T 40D NO
"1 31040 Sng 'l 310AD Sndg "1 31940 sng ! ! 13578 S5
|| 31ONIS T 300 | ! | F1ONIS T 30D | ! | JTONIS T W00 | ! J10A0 sna | ! A IND3 40
| 40 "AIND3 1 40 "AInD3 1 40 "AIND3 i TONIS Y |1 | cquen 1y N
Pl 1535010 WL | V| 153010 FHL | ! | 1S3S010 FHL | ! | w¥od T w03 |!
1] w04 N 0D | 1] ¥4 T 30D | 1| dod 2 30D | 31733 ! 602
I 31n93x3 _ 31n73x3 _ 31N93x3 _ _ ON
1 | | 1 |
Lerzo f 212> 120 torz> !
| " " | "
1 | | 1 |
“ " " “ | X 80
m | | 502~ | | <
1 | | A “ m
! N 3409 Lo e | 2 240D ! oﬁmww% ' | 001 9ngaa
m IZINOYHONAS m IZINOYHONAS m IZINOYHINAS m TZINGUHONAS m JZINOYHINAS
m /02° ' 90z ' NOLLYZINOYHONAS ! p0z> ' epzd L
| N 3V1S EEEECET 2 VIS | T 3vIS | 4/
| ANI13dId | INI13dId | ANI13d1d " ANI13dId |
I WNLAINOD ! . TVNLAAONOD ' . TVALAAINOD ' . TWNLdAINOD !
1 | | 1 |
\. mm\ mm\ bm\ Em\

US 9,304,880 B2

Sheet 3 of 6

Apr. 5, 2016

U.S. Patent

89€ 98 99€ ¢ 59€
............... 0Z€ > (6% [aNvy3do]3a0ddo | [viva [waav | _
[GWva3a0] Jaopdo | LONV¥3d0] 3000d0 | gg¢ (6% g CLSE . Seoe
v9 > g9t Nm_méu% H_S,Nmm el [E7) 0l _N wwg _ %Aew Mu_mm%
................ 95€ 5 cS8€ ¥SEy (g5 16¢
 (ONV¥3d0] 300940 | oo T Ta00d0 | [GWaado] Ja03do | 7€) ¢ TVE c06€
-.%m%----ﬂwwm. | ONVY3d0| 3003d0 | _ozs_uwa_ um_omu 0 .@m.v m@m-_ viv0 | o _N-
9v€ Gpe
_ Jonv¥acoT3a0040 leee S are > ave cse6 [anvi340] 300340 _-mm.m.w----- .A.H.mm 68
_ore .v mmmm. _[anva3do] 3aoado | €€ SEE VEE €6¢€ [Tvilva | vaav _Nmmm
4
- {ONV¥3d0 [30090 | - roaran Fa00d0 | T lTTTTTTC ; .NWNMMM
0682 C6Z€ gz gre S & mp coze bZE 5 cgze 2 S
28262 Crzg ¢ [Viva | waav_|s96€

- “Janvaado] 3000d0 |---====CCz oo oA A o C -
[ONY43d0 | 300240 | _ Q
ONVY3d0] 300040 | _ wm. —__ [onwy3doT 300040 | [[viva | waav |
G
oTE 3 Looe [ONV¥30 H_SMNm wwm 2 Amwm i, 20 ¢ f0e Nwmm
=-----------------------------1(NW3d0| 300340 _.._mw_my_.umm_.mmo.um_m._”_ Viva | ¥aav _.mn
y N 1400 P 09 2 1409 T 409 HH._RW__WWMMEH 1ge
vLE £L€ 26" 176 4

EINE

US 9,304,880 B2

Sheet 4 of 6

Apr. 5, 2016

U.S. Patent

3402 ¢ 3402

wa\

T 40D 193INNODYALNI
y WILSAS
I/p oy

US 9,304,880 B2

Sheet 5 of 6

Apr. 5, 2016

U.S. Patent

825 726
Awm.m Am.m.m ANm.m < I€S
NIz T
39VAHINI 0/1) allallall3
AER 1Nd1N0- LNdNI AYOWH MIERIRE
ollollollo
s>lallalla
— % — ¥0SS3004d
A
557 s YT s % ok s05° o
51§
L9INNOJYILINT WILSAS
T T T T2
¥IG £I6 215 176 605
\ 4 \ 4 \ 4 \ 4
3ISNON
STVHIHA ¥ IYHOLS Ny AV1dSIC
QUVOgADN
$05° £05° 205° 10°

00s \

U.S. Patent

Apr. 5, 2016

;601

UTILIZING A SINGLE DEBUGGING CONTROL
INTERFACE COMMON TO ALL PROCESSOR CORES
OF A PLURALITY OF PROCESSOR CORES

) §602

SYNCHRONIZING DEBUG SIGNALS FROM THE
PLURALITY OF PROCESSOR CORES TO A
COMMON TIMING DOMAIN

< 603

Y

TIME STAMPING THE PROCESSING COMPLETED ////

WITHIN THE PLURALITY OF PROCESSOR CORES
DURING A COMMON TIMING INTERVAL

3 §605

UTILIZING INTERPROCESSOR COMMUNICATION

(IPC) SELECTED FROM A GROUP CONSISTING ////

OF LOCKS, MUTEXES, AND SEMAPHORES TO
CREATE SYNCHRONIZATION POINTS ACROSS
THE PLURALITY OF PROCESSOR CORES

i ¢ 606

TRACKING PROCESSING COMPLETED WITHIN
THE PLURALITY OF PROCESSOR CORES
DURING THE COMMON TIMING INTERVAL

§608

\ 4

PERFORMING A STEP DEBUG OF THE
PLURALITY OF PROCESSOR CORES BASED ON
SYNCHRONIZATION WITH TIMING
INFORMATION OF A FIRST PROCESSOR CORE
OF THE PLURALITY OF PROCESSOR CORES

§609

A

UTILIZING A SINGLE DEBUGGING TOOL

CHAIN TO PROVIDE DEBUGGING RESULTS ////

IN RESPONSE TO THE TRACKING THE
PROCESSING COMPLETED WITHIN THE
PLURALITY OF PROCESSOR CORES
DURING THE COMMON TIMING INTERVAL

Sheet 6 of 6

US 9,304,880 B2

600
v

;604

OBTAINING TIMING
INFORMATION FOR THE
TIME STAMPING FROM A
FIRST PROCESSOR CORE
OF THE PLURALITY OF

PROCESSOR CORES

§6U7

ANALYZING THE
PROCESSING COMPLETED
WITHIN THE PLURALITY

OF PROCESSOR CORES
DURING THE COMMON
TIMING INTERVAL AS A
PLURALITY OF SEPARATE
PIPELINE STAGES TO
FACILITATE DEBUGGING
OF INTERPROCESSOR
COMMUNICATIONS (IPC)

§610

PERFORMING, WITHIN A
TEMPORALLY CONTIGUOUS
SINGLE DEBUGGING
SESSION, THE
UTILIZING THE SINGLE
DEBUGGING TOOL CHAIN
TO PROVIDE DEBUGGING
RESULTS IN RESPONSE
TO THE TRACKING THE
PROCESSING COMPLETED
WITHIN THE PLURALITY
OF PROCESSOR CORES
DURING THE COMMON
TIMING INTERVAL

FIG. 6

US 9,304,880 B2

1
SYSTEM AND METHOD FOR MULTICORE
PROCESSING

BACKGROUND

1. Field of the Disclosure

This disclosure relates generally to information processing
systems and, more specifically, to debugging technology for
processing systems.

2. Description of the Related Art

When debugging heterogeneous multicore processors,
there are different tool sets used with no interaction between
the different tool sets. Heterogeneous multicore processors
include processing systems in which the processor cores are
not all identical. As an example, a heterogeneous multicore
processor may include different types of processor cores. For
example, one or more processor cores may be oriented toward
general purpose processing, while one or more processor
cores may be optimized for a specific application, for
example, digital signal processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a block diagram illustrating a system incorporat-
ing debugging apparatus in accordance with at least one
embodiment.

FIG. 2 is a flow diagram illustrating a method for debug-
ging in accordance with at least one embodiment.

FIG. 3 is an instruction flow timing diagram illustrating
temporal relationships between a system interconnect and
multiple processor cores in accordance with at least one
embodiment.

FIG. 4 is a timing diagram illustrating temporal relation-
ships between a system interconnect and multiple processor
cores in accordance with at least one embodiment.

FIG. 5 is a block diagram illustrating a processing system
which may be used in accordance with at least one embodi-
ment.

FIG. 6 is a flow diagram illustrating a method for providing
debugging capability for multiple processor cores in accor-
dance with at least one embodiment.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION OF THE DRAWINGS

A method and apparatus for an asynchronous multicore
common debugging system is described. Debug signals from
a plurality of processor cores, which can include heteroge-
neous cores, are synchronized to a common timing domain.
Processing completed within the plurality of processor cores
during a common timing interval is tracked. A single debug-
ging tool chain is utilized to provide debugging results in
response to tracking the processing completed within the
plurality of processor cores during the common timing inter-
val. A debugging tool chain comprises elements to obtain
debugging signals from a processor core and to provide
debugging messages to a debug interface. In accordance with
at least one embodiment, a debugging tool chain may also
comprise an external debugger connected to the debug inter-
face. In accordance with at least one embodiment, tracking
the processing completed within the plurality of processor
cores during the common timing interval comprises tracking
interprocessor communications (IPC) and program code

10

15

20

25

30

35

40

45

50

55

60

2

instructions completed within the plurality of processor cores
during the common timing interval, and the order of process-
ing completed by the plurality of processor cores includes the
order of interprocessor communications (IPC) completed and
of'program code instructions completed. Such tracking can be
performed, for example, by monitoring, with reference to a
common timing domain, IPC and program code instructions
completed within the plurality of processor cores during the
common timing interval. As an example, a debug module can
timestamp instances of IPC and program code instructions
according to a common timing domain, which may, for
example, be a timing domain of a processor core designated
as a master processor core. By analyzing such IPC and pro-
gram code instructions according to their order of processing
according to their timestamps referenced to a common timing
domain, a temporally coherent representation of the opera-
tion of the multiple processor cores may be obtained.

Use of a common tool for monitoring interprocessor com-
munication (IPC) among processor cores which may be het-
erogeneous (wherein at least one processor is of a different
type than at least one other processor) is enabled. Even if the
heterogeneous processor cores are also asynchronous with
one another (where there is no guarantee of a constant rela-
tionship of phase and timing of at least one clock source of at
least one processor core with at least one clock source of at
least one other processor core), common timestamp informa-
tion is provided to allow determining interaction of the pro-
cesses among the different cores. Since using multiple tools
and debug probes for each separate core can be expensive and
may be cost prohibitive for consumer/embedded devices,
elimination of a need for multiple tools and debug probes can
reduce expense and streamline operations. Furthermore,
using multiple tools can complicate the effort involved, so
avoiding the need for multiple tools can reduce and simplify
effort.

In one embodiment, the debugging system allows simulta-
neous debugging of heterogeneous or homogenous, asyn-
chronous or synchronous, multiple processor cores using a
single debugging interface and a single debugger. For
example, the debugging system may be used for debugging a
system-on-chip (SoC) comprising a programmable micro-
controller unit (MCU) and a programmable specialized
execution unit (SEU), wherein the MCU and the SEU may
bothhave processor cores for executing program code, but the
MCU and SEU may be structurally and functionally different
from one another (e.g., heterogeneous). For example, the
MCU may be a general purpose processor while the SEU may
be dedicated to a specialized processing function, such as
digital signal processing (DSP). In accordance with at least
one embodiment, an ability to debug not only program code
of multiple, potentially heterogeneous, potentially asynchro-
nous, processor cores, but also interprocessor communication
(IPC) between those processor cores, is provided. By allow-
ing a single debugging tool chain to be used for debugging
heterogeneous multicore processing structures, the overall
cost of providing effective debugging capability can be low-
ered. As used herein, heterogeneous describes processor
cores that exhibit specific differences from one another. As
examples, heterogeneous processor cores may utilize difter-
ent instruction sets, may utilize different debugging proto-
cols, may have different processor capabilities, or may have
different processor architectures.

A single debugging tool chain is provided that keeps track
of'the processing completed within a common timing interval
referenced to a common timing interval point (typically
derived from a main interconnect structure), wherein the pro-
cessing performed by the multiple processing cores is syn-

US 9,304,880 B2

3

chronized such that interprocessor communications (IPC)
can be effectively debugged as well as the programmable
processing elements’ program code. The common timing
interval point provides a reference such that trace data can
recreate the processing completed with timing and synchro-
nization for IPC. The debugger treats the processing as sepa-
rate pipeline stages when debugging IPC or separate proces-
sors and debugs the data based on what is completed within
the common timing interval. By treating the processing as
separate pipeline stages, the debugger tracks the instruction
code flows being processed by the different processor cores as
separate instruction code flows, but, by also tracking IPC
between the processing cores, the debugger is able to track
relationships, for example, dependencies, between those
separate instruction code flows. As the processors may be
asynchronous, the processing completed may include pro-
cessing completed within one processor cycle of a completed
system interconnect cycle that ends the common timing inter-
val. By providing a single debugging control interface com-
mon to all processor cores, connection of the debugger to the
target processing structure is simplified. The use of a single
debugging tool chain to provide debugging results in
response to the tracking of processing completed within pro-
cessor cores during a common timing interval may be per-
formed within a temporally contiguous single debugging ses-
sion.

In accordance with at least one embodiment, debugging
signals from other processor cores are synchronized to a
processor core timing domain (e.g., a processor core inter-
connect) of one (e.g., a master) processor core, and the step
debugging of the other processor cores is performed such that
the processor core cycles of the other processor cores are run
to a point in time proximate to a point in time at which the
number of processor core cycles being run by the one (e.g.,
master) processor core are completed. In accordance with at
least one embodiment, the processing completed within the
plurality of processor cores during the common timing inter-
val includes processing completed within one processor cycle
of a completed interconnect cycle of the one (e.g., master)
processor core. As an example, processing of another proces-
sor core may be stopped within one processor cycle of the one
processor before the processing of the one processor core is
stopped. As another example, processing of the another pro-
cessor core may be stopped within one processor cycle of the
one processor after the processing of the one processor core is
stopped. As yet another example, processing of the another
processor core may be stopped within one processor cycle of
the one processor either before or after the processing of the
one processor core is stopped, depending on whether stop-
ping the another processor core before or after results in the
closest temporal alignment of the points at which the process-
ing of the one processor core and the processing of the another
processor core are stopped. A common stop trigger and a
common start trigger are utilized on all processor cores to
keep them synchronized. The common stop trigger and the
common start trigger are based on a processor core intercon-
nect speed of the one (e.g., master) processor core to reduce
the chance of data corruption and to keep the cores closer to
being in synchronization with each other. Time stamping can
be obtained from the one (e.g., master) processor core and be
used as common time stamping on all processor cores,
wherein the processing completed within the plurality of
processor cores during the common timing interval is time
stamped according to increments of the common timing inter-
val. Debugging of threads that are pipelined across heteroge-
neous and asynchronous architectures with relative accuracy
is provided. A flow trace methodology can easily be used to

20

40

45

55

4

reconstruct the program flow using instruction accurate simu-
lation of a processor core for faster debugging and accurate
reconstruction of the instruction pipeline. Interprocessor
communication (IPC), such as locks, mutexes (mutual exclu-
sions), and semaphores, may be analyzed to allow the asyn-
chronous multicore pipeline to be accurately represented and
to create synchronizations points across the processor cores.
A lock is a synchronization mechanism for enforcing limits
on access to a resource in a multi-threaded processing envi-
ronment, for example, among processor cores of a multicore
processor. As semaphore is a simple lock that may be imple-
mented as a binary state indicator that need not distinguish
between shared (e.g., read only) and exclusive (e.g., read and
write) modes. A mutex is a mutually exclusive lock capable of
enforcing exclusive access by a single thread (e.g., a thread
executed on a single processor core of a multicore processor),
which may enable, for example, reading and writing of infor-
mation to a resource, such as memory, without conflict. Pro-
viding a synchronization technique for trace data enables
asynchronous simultaneous multicore debugging via a single
common debugging interface. The provision of a common
debugging interface and the treatment of asynchronous pro-
cessing elements within a system as a single unit for system
debugging allows for easier IPC debugging within a single
tool chain.

FIG. 1 is a block diagram illustrating a system 100 incor-
porating debugging apparatus in accordance with at least one
embodiment. The system 100 comprises a processor core
101, a processor core 102, a processor core 103, a processor
core 104, a shared memory 105, a shared memory 106, a
shared memory 107, a shared memory 108, interconnect
structure 141 (which, in one embodiment, is a bus), a debug
buffer structure 145, a synchronizer 151, a synchronizer 146,
a debug interface 147, and a debugger 148. Processor core
101 comprises a debug block 125. Processor core 102 com-
prises a debug block 126. Processor core 103 comprises a
debugblock 127. Processor core 104 comprises a debug block
128. System interconnect structure 141 comprises a synchro-
nizer 109, a synchronizer 110, a synchronizer 111, a synchro-
nizer 112, a synchronizer 113, a synchronizer 114, a synchro-
nizer 115, a synchronizer 116, and a debug block 142.

Processor core 101 is connected to synchronizer 109 via
connection 117. Processor core 102 is connected to synchro-
nizer 110 via connection 118. Processor core 103 is con-
nected to synchronizer 111 via connection 119. Processor
core 10 is connected to synchronizer 112 via connection 120.
Shared memory 105 is connected to synchronizer 113 via
connection 121. Shared memory 106 is connected to synchro-
nizer 114 via connection 122. Shared memory 107 is con-
nected to synchronizer 115 via connection 123. Shared
memory 108 is connected to synchronizer 116 via connection
124.

Processor core 101 is connected to synchronizer 151 via
connection 137. Processor core 102 is connected to synchro-
nizer 151 via connection 138. Processor core 103 is con-
nected to synchronizer 151 via connection 139. Processor
core 104 is connected to synchronizer 151 via connection
140. System interconnect structure 141 is connected to syn-
chronizer 151 via connection 144. Processor core 101 is
connected to and can provide debug signals to synchronizer
146 via connection 133. Synchronizer 146 is connected to and
can provide debug control signals to processor core 101 via
connection 129. Processor core 102 is connected to and can
provide debug signals to synchronizer 146 via connection
134. Synchronizer 146 is connected to and can provide debug
control signals to processor core 102 via connection 130.
Processor core 103 is connected to and can provide debug

US 9,304,880 B2

5

signals to synchronizer 146 via connection 135. Synchronizer
146 is connected to and can provide debug control signals to
processor core 103 via connection 131. Processor core 104 is
connected to and can provide debug signals to synchronizer
146 via connection 136. Synchronizer 146 is connected to and
can provide debug control signals to processor core 104 via
connection 132. System interconnect structure 141 is con-
nected to and can provide common timing domain signals to
synchronizer 146 and to debug interface 147 via connection
143. Synchronizer 146 is connected to debug interface 147
via connection 149. Debug interface 147 is connected to
debugger 148 via connection 150.

Processor cores 101, 102, 103, and 104 need not be iden-
tical in structure and need not operate synchronously. Shared
memories 105, 106, 107, and 108 need not be identical in
structure and need not operate synchronously. While four
processor cores 101, 102, 103, and 104 and four shared
memories 105, 106, 107, and 108 are illustrated, the number
of processor cores need not be equal to the number of shared
memories—any number of processor cores and any number
of shared memories may be implemented.

Synchronizers 109, 110, 111, and 112 synchronize the
signals communicated between processors cores 101, 102,
103, and 104, respectively, and system interconnect structure
141, allowing communication between processor cores 101,
102, 103, and 104 and system interconnect structure 141
regardless of any differences in timing domains between such
elements. Synchronizers 109,110, 111, and 112 synchronize
system interconnect signals from processor cores 101, 102,
103, and 104, respectively, with a system interconnect timing
domain of system interconnect structure 141. Synchronizers
109, 110, 111, and 112 synchronize system interconnect sig-
nals from system interconnect structure 141 with processor
core timing domains of processor cores 101, 102, 103, and
104, respectively.

Synchronizers 113, 114, 115, and 116 synchronize the
signals communicated between shared memories 105, 106,
107, and 108, respectively, and system interconnect structure
141, allowing communication between shared memories 105,
106, 107, and 108 and system interconnect structure 141
regardless of any differences in timing domains between such
elements. Synchronizers 113, 114, 115, and 116 synchronize
system interconnect signals from shared memories 105, 106,
107, and 108, respectively, with a system interconnect timing
domain of system interconnect structure 141. Synchronizers
105, 106, 107, and 108 synchronize system interconnect sig-
nals from system interconnect structure 141 with shared
memory timing domains of shared memories 105, 106, 107,
and 108, respectively.

Synchronizer 151 synchronizes trace data from processor
cores 101, 102, 103, and 104 with a debug buffer structure
timing domain of debug buffer structure 145. Synchronizer
151 synchronizes signals from debug buffer structure 145
with processor core timing domains of processor cores 101,
102, 103, and 104.

Synchronizer 146 synchronizes debug signals from pro-
cessor cores 101, 102, 103, and 104 with a debug timing
domain of debugger 148. In accordance with at least one
embodiment, the debug timing domain of debugger 148 is
derived from a system interconnect timing domain of inter-
connect structure 141. In such a case, debug signals are syn-
chronized to a system interconnect timing domain, for
example, the interconnect structure 141 can be a clocked
structure, such as a cross-point switch, wherein the system
interconnect timing, e.g., the timing of interconnect structure
141, serves as a common timing domain to which the debug
signals from the processor cores are synchronized, and an

10

15

20

25

30

35

40

45

50

55

60

65

6

interconnect cycle of the interconnect timing domain serves
as a common timing interval. Alternatively, the debug timing
domain of debugger 148 can be derived from a processor core
timing domain, such as that of processor core 101, and syn-
chronizer 146 synchronizes signals from interconnect struc-
ture 141 with the debug timing domain of debugger 148. In
such a case, the processor core timing domain of processor
core 101 serves as a common timing domain to which the
debug signals from the other processor cores are synchro-
nized. The common timing domain to which the debug sig-
nals are synchronized may be selectable, wherein the com-
mon timing domain may be selected, for example, in response
to reception of a user input, from among a variety of possible
common timing domains, for example, a system interconnect
timing domain of interconnect structure 141, a processor core
timing domain of processor core 101, a processor core timing
domain of another processor core, and the like.

System interconnect timing and processor core timing
need not be of similar frequency, but may greatly differ in
frequency. For example, system interconnect timing may be
of much lower frequency than processor core timing. Thus, a
single interconnect cycle in the system interconnect timing
domain may span a duration similar to many (e.g., even
hundreds of) clock cycles in a processor core timing domain.
Therefore, many instructions may be executed by a processor
core during a single interconnect cycle in the system inter-
connect timing domain. If single-stepping is referenced to the
system interconnect timing domain, even a single step in such
atiming domain may allow many instructions to be processed
by a processor core. If processor cores are operating at dif-
ferent clock frequencies, are asynchronous, or are heteroge-
neous, the numbers of clock cycles of the different processor
cores and the numbers of instructions executed by the differ-
ent processor cores during a single interconnect cycle in the
system interconnect timing domain may be different among
the different processor cores. A processor core may, for
example, have its own local memory (e.g., random-access
memory (RAM)), for example, a cache or a local tightly
coupled RAM. Such local memory may be connected to its
processor core via a local interconnect (which may, in one
embodiment, be a local bus), wherein the local interconnect
may operate at a core clock frequency of the processor core
rather than a system interconnect frequency of a system inter-
connect.

Synchronizer 146 synchronizes debug control signals from
debugger 148, via debug interface 147, with processor core
timing domains of processor cores 101, 102, 103, and 104.
Alternatively, synchronizer 146 synchronizes debug control
signals from debugger 148, via debug interface 147, with
processor core timing domains of processor cores 102, 103,
and 104 and with a system interconnect timing domain of
interconnect structure 141. Synchronizer 146, as one
example, may use a cascaded flip-flop structure, such as two
cascaded flip-flops having clock inputs from a clock domain
of their intended destination, or, as another example, any
asynchronous first-in-first-out (FIFO) buffer capable of
receiving input data of an input clock domain and providing
output data of an output clock domain, or, as yet another
example, a multiplexer synchronizer where a multiplexer
selection input and at least one multiplexer data input are
from a clock domain of the multiplexer synchronizer’s
intended destination. Synchronizer 146 may use different
types of synchronizing elements for different types of signals,
for example, may use cascaded flip-flops for control signals
and, for example, a multiplexer synchronizer for data signals.

FIG. 2 is a flow diagram illustrating a method 200 for
debugging in accordance with at least one embodiment. The

US 9,304,880 B2

7

method 200 is performed with respect to a debugger (shown
by column 216), a conceptual pipeline stage 1 (shown by
column 217), a conceptual pipeline stage 2 (shown by column
218), an intermediate conceptual pipeline stage (shown by
column 219), and a final conceptual pipeline stage N (shown
by column 220). The method begins in block 201 by initiating
a debug session at the debugger. From block 201, the method
proceeds to block 202, where synchronization is performed.
Block 202 spans columns 216, 217, 218, 219, and 220 to
indicate the synchronization of block 202 occurs at the debug-
ger and at various pipeline stages. Thus, block 202 comprises
performing synchronization of a debug tool as represented at
block 203 within debugger column 216, performing synchro-
nization of a (master) processor core 1 as represented at block
204 within conceptual pipeline stage 1 column 217, perform-
ing synchronization of a processor core 2 as represented at
block 205 within conceptual pipeline stage 2 column 218,
performing synchronization of an intermediate processor
core as represented at block 206 within intermediate concep-
tual pipeline stage column 219, and performing synchroniza-
tion of a final processor core N as represented at block 207
within final conceptual pipeline stage N column 220. As an
example, synchronizer 146 of FIG. 1 may perform the syn-
chronization of block 202. As another example, synchronizer
146 of FIG. 1 may perform synchronization of the debug tool
at block 203, with synchronizer 109 performing synchroni-
zation of the (master) processor core 1 at block 204, with
synchronizer 110 performing the synchronization of proces-
sor core 2, with synchronizer 111 performing they synchro-
nization of processor core 3, and with synchronizer 112 per-
forming the synchronization of processor core 4.

From block 202, the method continues to decision block
208. In decision block 208, a decision is made as to whether
or not to single step through program code of processor core
1, processor core 2, the intermediate processor core, and final
processor core N as part of the debug process. If the decision
is made not to single step through the program code, the
method continues to block 209. In block 209, the program
code of all processor cores is run for an equivalent number of
cycles based on a designated number of cycles of (master)
processor core 1. As the timing of the processor cores may
differ, processor cores other than processor core 1 may be run
for a number of their own cycles that differs from the desig-
nated number of cycles of processor core 1. For example, the
processor cores other than processor core 1 may be run a
number of their own cycles that span an amount of time
substantially equal to an amount of time spanned by the
designated number of cycles of processor core 1. From block
209, the method continues to block 215, where the debug
session stops.

If, in decision block 208, a decision is made to single step
through the program code, the method continues to a plurality
of blocks corresponding to pipeline stages 217-220. Each
pipeline stage can represent operations performed using a
different processor core, for example, a different processor
core of a heterogeneous multicore processor. In particular, the
method continues to block 210 within conceptual pipeline
stage 1 column 217, to block 211 within conceptual pipeline
stage 2 column 218, to block 212 within intermediate con-
ceptual pipeline stage column 219, to block 213 within final
conceptual pipeline stage column 220. Blocks 210, 211, 212,
and 213 may be executed in parallel by their corresponding
processor cores, e.g., by processor core 1, processor core 2,
the intermediate processor core, and final processor core N,
respectively. Thus, at block 210, processor core 1 executes its
program code for a single system interconnect cycle with
respect to the processor core timing domain of processor core

30

35

40

45

50

8

1; at block 211, processor core 2 executes its program code for
the closest equivalent number of processor core 2 execution
cycles that correspond in time to the single system intercon-
nect cycle within which processor core 1 executes its program
code; block 212, the intermediate processor core executes its
program code for the closest equivalent number of interme-
diate processor core execution cycles that correspond in time
to the single system interconnect cycle within which proces-
sor core 1 executes its program code; and at block 213, final
processor core N executes its program code for the closest
equivalent number of final processor core N execution cycles
that correspond in time to the single system interconnect
cycle within which processor core 1 executes its program
code. As an example, processor core 101 of FIG. 1 may
perform the execution at block 210, processor core 102 of
FIG. 1 may perform the execution at block 211, processor
core 103 of FIG. 1 may perform the execution at block 212,
and processor core 104 of FIG. 1 may perform the execution
at block 213. As an example, such execution may be per-
formed, for example, using processor core interdependency
mechanisms, such as locks, mutexes, or semaphores, to coor-
dinate execution of instructions on processor cores such as the
processor core 2, the intermediate processor core, and the
final processor core N with execution of instructions on a
master processor core, for example, the processor core 1. As
another example, such execution may be performed by mul-
tiple single step commands sent from the debugger, where the
numbers of multiple single step commands for the processor
core 2, the intermediate processor core, and the final proces-
sor core N result in blocks 211, 212, and 213 spanning sub-
stantially the same amount of time, as denominated according
to a common timing domain, as block 210. As yet another
example, such execution may be performed by the debugger
signaling all of the processor core 1, the processor core 2, the
intermediate processor core, and the final processor core N to
stop execution, for example, at the end of their current pro-
cessor core cycles. As a further example, such execution may
be performed by the debugger signaling the processor core 2,
the intermediate processor core, and the final processor core
N to stop execution in response to the processor core 1 stop-
ping execution.

From blocks 210, 211, 212, and 213, the method continues
to decision block 214. In decision block 214, a decision is
made by the debugger (as with the blocks under debugger
column 216) as to whether or not the trace is complete. If so,
the method continues to block 215, where the debug session
stops. If not, the method returns to decision block 208.

FIG. 3 is an instruction flow timing diagram 300 illustrat-
ing temporal relationships between a system interconnect and
multiple processor cores in accordance with at least one
embodiment. Time is illustrated as progressing downward
along a vertical axis of FIG. 3. Horizontal lines at times 381,
382,383,384, 385,386,387, 388, 389,390,391, 392, and 393
depict instants in time along the vertical axis. Such times may
be denominated in increments of a particular clock, such as
the clock of a common timing domain, which may, for
example, by the clock of a processor core designated as the
master processor core or another clock to which signals from
all of the processor cores may be synchronized for use by the
debugging system (for example, a clock applicable to a com-
mon system interconnect structure, such as system intercon-
nect structure 141 of FIG. 1). System interconnect activity
over time is shown under system interconnect column 375.
Instruction flow of processor core 1, processor core 2, the
intermediate processor, and final processor core N over time
are shown under processor core columns 371, 372, 373, and
374, respectively.

US 9,304,880 B2

9

As can be seen in FIG. 3, the processor cores do not nec-
essarily begin or complete execution of instructions at the
same time, and the times a processor core begins or ends
execution of an instruction may not be temporally aligned
with a system interconnect timing domain or a processor core
timing domain of another processor core. For example, under
the system interconnect timing domain, at time 385, proces-
sor core 1 has begun but not yet finished execution of an
instruction comprising opcode 323 and operand 324. As
another example, under the processor core timing domain of
processor core 1, at time 384, the intermediate processor core
has begun but not yet finished execution of an instruction
comprising opcode 325 and operand 326.

At time 381, address 301 and data 302 are present on the
system interconnect (for example, system interconnect struc-
ture 141 of FIG. 1) and processor core 2 executes opcode 305
and operand 306. At time 382, address 301 and data 302 are
still present on the system interconnect, processor core 2 is
still executing opcode 305 and operand 306, and processor
core 1 executes opcode 303 and operand 304. Between time
382 and time 383, the intermediate processor core executes
opcode 307 and operand 308 and final processor core N
executes opcode 309 and operand 310. The instructions (e.g.,
opcodes with their corresponding operands) are illustrated as
being executed by different processor cores at different times
from one another as the processor cores may be asynchronous
or, since the processor cores may be heterogeneous, the pro-
cessor cores may process the instructions differently from one
another.

At time 383, address 311 and data 312 are present on the
system interconnect, processor core 1 is executing opcode
313 and operand 314, and the intermediate processor core is
executing opcode 317 and operand 318. Between time 383
and time 384, processor core 2 executes opcode 315 and
operand 316, the intermediate processor core executes
opcode 325 and operand 326, and the final processor core N
executes opcode 319 and operand 320. At time 384, processor
core 1 executes opcode 323 and operand 324 and the inter-
mediate processor core is still executing opcode 325 and
operand 326. Attime 385, address 321 and data 322 are on the
system interconnect and processor core 1 is still executing
opcode 323 and operand 324, as the intermediate processor
core finishes executing opcode 325 and operand 326. At time
386, processor core 1 executes opcode 333 and operand 334,
processor core 2 executes opcode 335 and operand 336, final
processor core N is still executing opcode 329 and operand
330, as the intermediate processor core finishes executing
opcode 327 and 328. At time 387, address 331 and data 332
are on the system interconnect and the intermediate processor
core executes opcode 337 and operand 338, as processor core
1 finishes executing opcode 333 and operand 334 and proces-
sor core 2 finishes executing opcode 335 and operand 336.

At time 388, processor core 1 executes opcode 343 and
operand 344 and final processor core N executes opcode 339
and operand 340. At time 389, address 341 and data 342 are
on the system interconnect and processor core 2 executes
opcode 345 and operand 346, as the intermediate processor
core finishes executing opcode 347 and operand 348. At time
390, processor core 1 executes opcode 353 and operand 354
and the intermediate processor core executes opcode 355 and
operand 356, as the presence of address 341 and data 342 on
the system interconnect are ending and processor core 2 fin-
ishes executing opcode 345 and operand 346. Between time
390 and time 391, final processor core N executes opcode 349
and operand 350. At time 391, address 351 and data 352 are
on the system interconnect and the intermediate processor
core executes opcode 361 and operand 362. At time 392,

10

15

20

25

30

35

40

45

50

55

60

65

10

address 351 and data 352 are still on the system interconnect,
the intermediate processor core is still executing opcode 361
and operand 362, and processor core 1 executes opcode 357
and operand 358. Between times 392 and 393, processor core
2 executes opcode 359 and operand 360, the intermediate
processor core executes opcode 369 and operand 370, and
final processor core N executes opcode 363 and operand 364.
At time 393, address 365 and data 366 are on the system
interconnect and processor core 1 executes opcode 367 and
operand 368, as the intermediate processor core finishes
executing opcode 369 and operand 370.

Times 381, 383, 385, 387, 389, 391, and 393 depict opera-
tion synchronous with a system interconnect timing domain
of'a system interconnect, which conveys system interconnect
traffic, as illustrated under system interconnect column 375.
Times 382, 383, 384, 386, 388, 390, 392, and 393 depict
operation synchronous with a processor core timing domain
of (master) processor core 1, which executes instructions, as
illustrated under processor core column 371. While times 383
and 393 appear to be synchronous with both the system inter-
connect timing domain and the processor core timing domain,
such a depiction is coincidental as a result of the finite reso-
Iution of the drawing, although, in accordance with at least
one embodiment, one or more of the processor cores may be
synchronous or asynchronous with each other and synchro-
nous or asynchronous with a system interconnect. Also, more
than one system interconnect may be present (e.g., a main
system interconnect and a peripheral system interconnect),
and such system interconnects may be synchronous or asyn-
chronous with each other.

In accordance with at least one embodiment, for a given
common timing interval under a given timing domain, a
debugger processes only those instructions that have been
completed within that given common timing interval. For
example, a processor core may be executing, but may not yet
have completed, an instruction as the common timing interval
ends. Since that instruction wasn’t completed within the com-
mon timing interval, that instruction would be included in the
next common timing interval, not the current timing interval.
In accordance with at least one embodiment, for a given
common timing interval under a given timing domain, a
debugger processes only those instructions completed within
one processor core timing cycle of a completed system inter-
connect cycle that ends the common timing interval. For
example, a processor core may be executing, but may not yet
have completed, an instruction as the common timing interval
ends. However, if the processor core completes that instruc-
tion within one processor core timing cycle of a completed
system interconnect cycle that ends the common timing inter-
val, that instruction may be included in that common timing
interval, not the next common timing interval. In such an
example, the end of the common timing interval is marked by
the completion of a system interconnect cycle, and the toler-
ance for including the instruction being included in the com-
mon timing interval is one processor core timing cycle. As an
example, such a one processor core timing cycle may be a
processor core timing cycle of the processor core executing
the instruction. As another example, such a one processor
core timing cycle may be a processor core timing cycle of a
processor core designated as a master processor core.

FIG. 4 is a timing diagram 400 illustrating temporal rela-
tionships between a system interconnect and multiple proces-
sor cores in accordance with at least one embodiment. Time is
illustrated as progressing downward along a vertical axis of
FIG. 4. Horizontal lines at times 481, 482, 483, 484, 485, 486,
and 487 depict instants in time along the vertical axis Such
times may be denominated in increments of a particular

US 9,304,880 B2

11

clock, such as the clock of a common timing domain, which
may, for example, by the clock of a processor core designated
as the master processor core or another clock to which signals
from all of the processor cores may be synchronized for use
by the debugging system (for example, a clock applicable to
a common system interconnect structure, such as system
interconnect structure 141 of FIG. 1). System interconnect
cycles over time are shown as a vertically progressing wave-
form 491 under system interconnect column 475. Processor
core cycles of processor core 1, processor core 2, the inter-
mediate processor, and final processor core N over time are
shown as vertically progressing waveforms 492, 493, 494,
and 495, respectively, under processor core columns 471,
472, 473, and 474, respectively.

Times 481, 483, 485, and 487 are illustrated as being syn-
chronous with a system interconnect timing domain of the
system interconnect and as occurring at the rising edges of a
system interconnect signal. Times 482, 483, 484, and 486 are
illustrated as being synchronous with a processor core timing
domain of processor core 1 and as occurring at the rising
edges of a processor core signal. While time 483 appears to be
synchronous with both the system interconnect timing
domain and the processor core timing domain, such a depic-
tion is coincidental as a result of the finite resolution of the
drawing.

As can be seen in FIG. 4, the processor cores do not nec-
essarily begin or end processor core cycles at the same time,
and the times a processor core begins or ends a processor core
cycle may not be temporally aligned with a system intercon-
nect timing domain or a processor core timing domain of
another processor core. For example, under the system inter-
connect timing domain, at time 485, processor core 1 has
begun but not yet finished a processor core cycle. As another
example, under the processor core timing domain of proces-
sor core 1, at time 484, the intermediate processor core has
begun but not yet finished a processor core cycle. In accor-
dance with at least one embodiment, for a given common
timing interval under a given timing domain, a debugger
processes only those instructions that have been completed
within that given common timing interval. The processor
cores may stop processing subsequent instructions while the
debugger processes the instructions completed within the
given common timing interval, or the processor cores may
continue to process subsequent instructions while the debug-
ger processes the instructions completed within the given
common timing interval. Since the information about the
instructions of the processor cores being provided to the
debugger are referenced to a common timing domain in
which the common timing interval is defined, the debugger
can easily distinguish between instructions that have been
completed within the given common timing interval and
instructions completed at some other time (e.g., before or
after the given common timing interval). Thus, even if pro-
cessor cores are continuing to execute instructions as the
debugger processes instructions completed within the com-
mon timing interval, the debugging system may store infor-
mation about instructions being completed after the common
timing interval, and the debugger may later process such
information when processing instructions completed in the
subsequent common timing interval. In accordance with at
least one embodiment, for a given common timing interval
under a given timing domain, a debugger processes only those
instructions completed within one processor core timing
cycle of a completed system interconnect cycle that ends the
common timing interval.

FIG. 5 is a block diagram illustrating a processing system
500 which may be used in accordance with at least one

10

15

20

25

30

35

40

45

50

55

60

65

12

embodiment. Processing system 500 comprises display 501,
keyboard and mouse 502, storage 503, peripherals 504, pro-
cessor 505, memory 506, input-output (/O) 507, debug inter-
face 508, and system interconnect 509. Processor 505 may be
a multicore processor comprising, for example, cores 531,
532, 533, and 534. Display 501 is connected to system inter-
connect 509 via system interconnect connection 511. Key-
board and mouse 502 are connected to system interconnect
509 via system interconnect connection 512. Storage 503 is
connected to system interconnect 509 via system intercon-
nect connection 513. Peripherals 504 are connected to system
interconnect 509 via system interconnect connection 514.
Processor 505 is connected to system interconnect 509 via
system interconnect connection 515. Memory 506 is con-
nected to system interconnect 509 via system interconnect
connection 516. Input-output (/O) 507 is connected to sys-
tem interconnect 509 via system interconnect connection
517. Debug interface 508 is connected to system interconnect
509 via system interconnect connection 518. Input-output
(I/0) 507 may be connected to external devices via external
connection 527. Debug interface 508 may be connected exter-
nally via external connection 528.

As one example, system 500 may be used to implement
processor cores 101, 102, 103, and 104, system interconnect
structure 141, and shared memory 105, 106, 107, and 108 of
FIG. 1 with corresponding processor cores 531, 532,533, and
534, corresponding system interconnect 509, and corre-
sponding memory 506, respectively. As another example,
system 500 may be used to implement debugger 148 and
debug interface 147 of FIG. 1 with corresponding elements
501, 502, 503, 504, 505, 506, and 507 and corresponding
debug interface 508, respectively.

FIG. 6 is a flow diagram illustrating a method 600 for
providing debugging capability for multiple processor cores
in accordance with at least one embodiment. In block 601, a
single debugging control interface common to all processor
cores of the plurality of processor cores is utilized. Block 601
may, for example, be provided before other method blocks
occur and may, for example, remain in place for subsequent
method blocks. In block 602, debug signals from a plurality of
processor cores are synchronized to a common timing
domain. In block 603, time stamping the processing com-
pleted within the plurality of processor cores during the com-
mon timing interval occurs. Timing information for the time
stamping may be obtained from a first processor core of the
plurality of processor cores, as shown in block 604. Time
stamping, with reference to a common timing domain, of the
processing completed within the plurality of processor cores
during the common timing interval allows meaningful com-
parison between the timing of processing completed within
different processor cores of the plurality of processor cores,
which may be, as an example, asynchronous to one another
or, as another example, heterogeneous with respect to one
another. As the debug buffer structure (e.g., debug buffer
structure 145 of FIG. 1) includes synchronizer 151 and can
synchronize the signals it receives via connections 137, 138,
139, 140, and 144, the debug buffer structure can use the
timing information available via one of those connections as
a timing reference to obtain time stamps for signals received
via those connections even if those signals are asynchronous
with that timing information. Thus, the debug buffer structure
can time stamp and store information descriptive of process-
ing completed within the plurality of processor cores during
the common timing interval.

In block 605, interprocessor communication (IPC)
selected from a group of locks, mutual exclusions (mutexes),
and semaphores is utilized to create synchronizations points

US 9,304,880 B2

13

across the plurality of processor cores. For example, locks,
mutexes, or semaphores may be used to coordinate process-
ing among the plurality of processor cores and to establish or
enforce relationships (e.g., temporal relationships, logical
dependencies, and the like) between the processing being
performed by the plurality of processor cores. As an example,
locks, mutexes, or semaphores may be used to relate the
processing of several of the plurality of processor cores to the
processing of a processor core designated to be a master
processor core, allowing a common timing interval to be
established relative to a common timing domain of the master
processor core. Thus, a single common debugging tool chain
can monitor processing among the plurality of processor
cores with respect to a common timing interval of a common
timing domain.

In block 606, tracking of processing completed within the
plurality of processor cores during a common timing interval
is performed. Such tracking may include analyzing the pro-
cessing completed within the plurality of processor cores
during the common timing interval as a plurality of separate
pipeline stages to facilitate debugging of interprocessor com-
munications (IPC), as shown in block 607. By determining
the relationships of the separate pipeline stages to one
another, such as temporal relationships and logical dependen-
cies, the processing completed within the plurality of proces-
sor cores during the common timing interval can be organized
within the context of the overall processing being performed
by all of the processor cores. Such tracking allows temporal
relationships and logical dependencies between operations of
the plurality of processor cores to be determined, which
allows presentation of a unified representation of the process-
ing occurring among the plurality of processor cores.

In block 608, a step debug of the plurality of processor
cores is performed based on synchronization with timing
information of a first processor core of the plurality of pro-
cessor cores. In block 609, a single debugging tool chain is
utilized to provide debugging results in response to the track-
ing the processing completed within the plurality of processor
cores during the common timing interval. The utilizing the
single debugging tool chain to provide debugging results in
response to the tracking the processing completed within the
plurality of processor cores during the common timing inter-
val may be performed within a temporally contiguous single
debugging session, as shown in block 610. The temporally
contiguous single debugging session allows the processing
among the plurality of processor cores to be presented with
respect to a common timing domain. By presenting the rela-
tionships of the processing among the plurality of processor
cores with respect to a common timing domain, the events
described as part of the single debugging session can be
related in time with the granularity of a clock of the common
timing domain, thereby providing the temporally contiguous
single debugging session. In accordance with at least one
embodiment, the plurality of processor cores are heteroge-
neous processor cores. In accordance with at least one
embodiment, the plurality of processor cores are asynchro-
nous processor cores. In accordance with at least one embodi-
ment, the plurality of processor cores are asynchronous het-
erogeneous processor cores.

In accordance with at least one embodiment, a method
comprises synchronizing debug signals from a plurality of
processor cores to a common timing domain and transmitting
debug messages based on the debug signals via a single debug
interface common to all processor cores of the plurality of
processor cores to enable tracking of processing completed
within the plurality of processor cores during a common
timing interval. In accordance with at least one embodiment,

15

30

40

45

50

55

14

the debug messages comprise interprocessor communica-
tions (IPC) debug messages based on IPC between at least
two processor cores of the plurality of processor cores. In
accordance with at least one embodiment, the method further
comprises time stamping the processing completed within the
plurality of processor cores during the common timing inter-
val. In accordance with at least one embodiment, the time
stamping further comprises obtaining timing information for
the time stamping from a first processor core of the plurality
of processor cores. In accordance with at least one embodi-
ment, the time stamping further comprises obtaining timing
information for the time stamping from a system interconnect
coupled to the plurality of processor cores. In accordance
with at least one embodiment, the method further comprises
creating synchronization points across the plurality of pro-
cessor cores based on interprocessor communication (IPC)
selected from a group consisting of locks, mutexes, and sema-
phores to enable the tracking of processing completed within
the plurality of processor cores during the common timing
interval. In accordance with at least one embodiment, the
method further comprises utilizing a single debugging tool
chain to provide debugging results in response to tracking the
processing completed within the plurality of processor cores
during the common timing interval. In accordance with at
least one embodiment, the utilizing a single debugging tool
chain to provide debugging results in response to the tracking
the processing completed within the plurality of processor
cores during the common timing interval is performed within
a temporally contiguous single debugging session.

In accordance with at least one embodiment, the plurality
of processor cores include processing cores of at least two
different types. In accordance with at least one embodiment,
at least two different cores of the plurality of processor cores
are not synchronous. In accordance with at least one embodi-
ment, the method further comprises performing a step debug
of the plurality of processor cores based on synchronization
with timing information of a first processor core of the plu-
rality of processor cores. In accordance with at least one
embodiment, the method further comprises performing a step
debug of the plurality of processor cores based on synchro-
nization with timing information of a system interconnect
coupled to the plurality of processor cores.

In accordance with at least one embodiment, apparatus
comprise a plurality of processor cores, a debug synchronizer
coupled to the plurality of processor cores for synchronizing
debugging signals from the plurality of processor cores to a
common timing domain, and a debug interface coupled to the
debug synchronizer, wherein the debug interface transmits
debug information referencing an order of processing com-
pleted by the plurality of processor cores with respect to the
common timing domain. In accordance with at least one
embodiment, the debug interface transmits debug informa-
tion for interprocessor communications (IPC) to correlate the
processing completed by the plurality of processor cores
within an interval of the common timing domain. In accor-
dance with at least one embodiment, time stamping is applied
to a record of the processing completed by the plurality of
processor cores, wherein the time stamping is referenced to
the common timing domain. In accordance with at least one
embodiment, time stamping is applied to a record of the
processing completed by the plurality of processor cores,
wherein the time stamping is referenced to a timing of a first
core. In accordance with at least one embodiment, interpro-
cessor communication (IPC) selected from a group consisting
of locks, mutexes, and semaphores is used to create debug-
ging synchronization points. In accordance with at least one
embodiment, the apparatus further comprises a single com-

US 9,304,880 B2

15

mon debugging control interface common to all of the plu-
rality of processor cores. In accordance with at least one
embodiment, at least two processors of the plurality of pro-
cessor cores are of different types. In accordance with at least
one embodiment, at least two processors of the plurality of
processor cores are asynchronous with each other. In accor-
dance with at least one embodiment, debugging for all of the
plurality of processor cores is performed within a temporally
contiguous single common debugging session.

In accordance with at least one embodiment, a method
comprises synchronizing system interconnect signals of a
plurality of processor cores to a system interconnect timing
domain of a system interconnect coupled to the plurality of
processor cores and synchronizing debug signals of a plural-
ity of processor cores to a common timing domain of a com-
mon debug interface. In accordance with at least one embodi-
ment, the method further comprises transmitting via the
common debug interface debug messages pertaining to pro-
cessing completed by the plurality of processor cores during
a common timing interval. In accordance with at least one
embodiment, the processing completed by the plurality of
processor cores during the common timing interval com-
prises processing completed by the plurality of processor
cores within a clock cycle of the common timing interval. In
accordance with at least one embodiment, the clock cycle is
selected from a group consisting of a common timing domain
clock cycle of the common timing domain, a processor core
clock cycle of one processor core of the plurality of processor
cores, and a system interconnect clock cycle of the system
interconnect. In accordance with at least one embodiment, the
debug messages comprise interprocessor communications
(IPC) debug messages based on IPC between at least two
processor cores of the plurality of processor cores.

Although the invention is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present inven-
tion. Any benefits, advantages, or solutions to problems that
are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential
feature or element of any or all the claims.

Some of the above embodiments, as applicable, may be
implemented using a variety of different information process-
ing systems.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations merely illustrative. The functionality of multiple
operations may be combined into a single operation, and/or
the functionality of a single operation may be distributed in
additional operations. Moreover, alternative embodiments
may include multiple instances of a particular operation, and
the order of operations may be altered in various other
embodiments.

Benefits, other advantages, and solutions to problems have
been described above with regard to specific embodiments.
However, the benefits, advantages, solutions to problems, and
any feature(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be con-
strued as a critical, required, or essential feature of any or all
the claims.

What is claimed is:

1. A method comprising:

synchronizing debug signals from a plurality of processor

cores to a common timing domain;

25

30

35

40

45

50

55

65

16

transmitting debug messages based on the debug signals
via a single debug interface common to all processor
cores of the plurality of processor cores to enable track-
ing of processing completed within the plurality of pro-
cessor cores during a common timing interval.

2. The method of claim 1 wherein the debug messages
comprise interprocessor communications (IPC) debug mes-
sages based on IPC between at least two processor cores of
the plurality of processor cores.

3. The method of claim 1 further comprising:

time stamping the processing completed within the plural-
ity of processor cores during the common timing inter-
val.

4. The method of claim 3 wherein the time stamping further

comprises:

obtaining timing information for the time stamping from a
first processor core of the plurality of processor cores.

5. The method of claim 3 wherein the time stamping further
comprises:

obtaining timing information for the time stamping from a
system interconnect coupled to the plurality of processor
cores.

6. The method of claim 1 further comprising:

creating synchronization points across the plurality of pro-
cessor cores based on interprocessor communication
(IPC) selected from a group consisting of locks,
mutexes, and semaphores to enable the tracking of pro-
cessing completed within the plurality of processor
cores during the common timing interval.

7. The method of claim 1 wherein the plurality of processor

cores include processing cores of at least two different types.

8. The method of claim 1 wherein at least two different
cores of the plurality of processor cores are not synchronous.

9. The method of claim 1 further comprising:

performing a step debug of the plurality of processor cores
based on synchronization with timing information of a
first processor core of the plurality of processor cores.

10. The method of claim 1 further comprising:

performing a step debug of the plurality of processor cores
based on synchronization with timing information of a
system interconnect coupled to the plurality of processor
cores.

11. Apparatus comprising:

a plurality of processor cores;

a debug synchronizer coupled to the plurality of processor
cores for synchronizing debugging signals from the plu-
rality of processor cores to a common timing domain;
and

a debug interface coupled to the debug synchronizer,
wherein the debug interface transmits debug informa-
tion referencing an order of processing completed by the
plurality of processor cores with respect to the common
timing domain.

12. The apparatus of claim 11 wherein the debug interface
transmits debug information for interprocessor communica-
tions (IPC) to correlate the processing completed by the plu-
rality of processor cores within an interval of the common
timing domain.

13. The apparatus of claim 11 wherein time stamping is
applied to a record of the processing completed by the plu-
rality of processor cores, wherein the time stamping is refer-
enced to the common timing domain.

14. The apparatus of claim 11 wherein time stamping is
applied to a record of the processing completed by the plu-
rality of processor cores, wherein the time stamping is refer-
enced to a timing of a first core.

US 9,304,880 B2

17

15. The apparatus of claim 11 further comprising:

a single common debugging control interface common to

all of the plurality of processor cores.

16. A method comprising:

synchronizing system interconnect signals of a plurality of

processor cores to a system interconnect timing domain
of'a system interconnect coupled to the plurality of pro-
cessor cores;

synchronizing debug signals of a plurality of processor

cores to a common timing domain of a common debug
interface.

17. The method of claim 16 further comprising:

transmitting via the common debug interface debug mes-

sages pertaining to processing completed by the plural-
ity of processor cores during a common timing interval.

18. The method of claim 17 wherein the processing com-
pleted by the plurality of processor cores during the common
timing interval comprises:

processing completed by the plurality of processor cores

within a clock cycle of the common timing interval.

19. The method of claim 18 wherein the clock cycle is
selected from a group consisting of a common timing domain
clock cycle of the common timing domain, a processor core
clock cycle of one processor core of the plurality of processor
cores, and a system interconnect clock cycle of the system
interconnect.

20. The method of claim 17 wherein the debug messages
comprise interprocessor communications (IPC) debug mes-
sages based on IPC between at least two processor cores of
the plurality of processor cores.

#* #* #* #* #*

30

18

